
AUTOMATIC IN-FLIGHT REPAIR OF FPGA COSMIC RAY DAMAGE

Sarah THOMPSON, Alan MYCROFT

Computer Laboratory, University of Cambridge, William Gates Building,
JJ Thomson Avenue, Cambridge, CB3 0FD, UK

Guillaume BRAT

Research Institute for Advanced Computer Science, NASA Ames Research Center,
Mail Stop 269-2, Moffett Field, CA 94035-1000

Arnaud VENET

Kestrel Technology LLC, 3260 Hillview Avenue, Palo Alto, CA94304

ABSTRACT:

FPGAs are finding an increasing number of applications within NASA in deep space
probes, planetary rovers and manned vehicles. Like other silicon devices, FPGAs can be
damaged by high energy cosmic ray impacts, resulting in permanent latch-up conditions
that manifest as ‘stuck-at’ faults. Traditionally, multiple redundancy and voting logic have
been employed as a work-around, particularly for high reliability, extreme environment
applications. However, reconfigurable FPGAs are becoming increasingly common in flight
systems, offering a potentially valuable possibility for improved levels of fault recovery –
after a fault is detected and localised within an FPGA, it is feasible to reprogram the device,
in flight, with an alternative, equivalent, circuit that does not depend upon the damaged
portion of the chip.

Designing such alternative chip layouts by hand is a valid option, though costly in terms
of the man-hours of effort required; a fully automated alternative would be far preferable.
In this paper, a technique is presented that allows the automatic generation of FPGA con-
figurations for fault recovery purposes by means of non-clausal SAT solver technology.

1 INTRODUCTION

Designing hardware capable of reliable operation in deep space is far from trivial. The familiar, tried
and trusted design techniques employed by engineers working on conventional, ground-based electron-
ics are not sufficient to ensure reliability in the extreme environment of deep space. Radiation, extreme
temperatures, hard vacuum and many other challenges must beaddressed whilst accommodating a re-
quirement for extremely high reliability – deep space probes typically must operate for decades, with no
possibility of servicing by astronauts if anything goes badly awry.

Inherently radiation hard semiconductor devices do exist,though they carry a very significant cost
penalty, as well as generally requiring more power in returnfor less performance in comparison with
commercially available off-the-shelf (COTS) devices. A common radiation hardening design approach
involves taking an existing COTS standard cell design, thensynthesising a new version where some or
all of the original gates and flip flops are replaced with more complex, internally redundant equivalents.

1

The widely used RAD6000 processor was created by replacing the standard cells of the original IBM
RS/6000 design with hardened versions, resulting in a processor with greatly improved radiation hard-
ness with respect to the original. Such chips are more radiation resistant than the COTS equivalent, but
are slower, require more power and are typically extremely costly ($100k per device is not unusual) due
to the need to amortise foundry set-up costs over a relatively small number of saleable devices. De-
signers operating within contemporary budgetary constraints often therefore prefer to use COTS devices
where possible, reserving extremely expensive radiation hard components for critical subsystems only.
For example, a mission critical guidance system might be implemented with radiation hardened chips,
but a less critical instrument package might use COTS components instead, achieving a significant cost,
mass and power saving as well as allowing higher clock rates.

1.1 FPGAS IN SPACE

The Apollo programme at it height consumed more than half theworld’s entire chip manufacturing
capacity, comprising many custom-built ASICs. Modern spacecraft, however, are designed within bud-
getary constrains that mean that full custom ASICs are far too expensive to be considered. Nevertheless,
mass limitations1 still mean that custom chips are necessary. Field programmable gate arrays (FPGAs)
offer a good compromise; though less efficient than full-custom ASICs in terms of density and power
consumption, they nevertheless offer a means by which custom chips can be incorporated into designs
without incurring the huge (approximately US$2 million periteration) fabrication costs of full-custom
devices. FPGAs typically contain a large array of general purpose logic that only ‘becomes’ the target
circuit after an appropriate configuration bit stream is uploaded. In some FPGA families, particularly
those manufactured by Actel, programming is carried out once only, after manufacture but typically be-
fore the chip is incorporated into a board-level system. Other families, particularly those manufactured
by Xilinx and Altera, hold their bit stream in static RAM, thereby making it possible to reconfigure such
FPGAs dynamically.

As with any other semiconductor device, FPGAs are susceptible to radiation effects including single-
event upsets (SEUs) and permanent latch-up faults. Radiation hard FPGAs are commercially avail-
able2, though they tend to have lower density, lower performance and significantly higher cost than
commercial grade devices. At the time of writing, both approaches are in use in ongoing missions –
the Galileo/Huygens spacecraft incorporates a number of Actel radiation hardened FPGAs, whereas the
Mars Exploration Rover mission’s twin rovers, Spirit and Opportunity, depend on COTS devices sourced
from Xilinx.

1.2 RADIATION DAMAGE

Radiation levels in space vary widely; in low earth orbit, levels can be sufficiently low that conventional
electronics can be used unmodified3. As spacecraft venture outside the protective effects of the Earth’s
magnetic field, radiation levels increase both in terms of the frequency and energy of particle impacts.

Fig. 1 shows the effect of a heavy ion moving at a relativisticvelocity (cosmic ray) passing through the
gate of a field effect transistor in a typical gate. The ion leaves a trail of charge that transiently affects
the operation of the transistor, which may manifest as an unwanted voltage spike in the circuit. In many
cases, such spikes are benign and do not cause circuit behaviour to deviate from specification. Often,
however, such a spike, often referred to as a Single Event Upset (SEU), may cause a circuit to enter an
invalid state. Normally, such conditions are detected by watchdog circuits and are cleared by simply
resetting the malfunctioning subsystem.

Sufficiently high energy particle impacts can cause permanent damage. Often referred to as permanent
latch-up, such damage manifests as signals ceasing to function correctly and appearing to be stuck per-
manently at logictrueor false.Such damage can not be cleared by a reset, so some form of redundancy
is required in order for the subsystem to continue to function.

1Largely due to launch costs of the order of approximately $30,000 per kg to low earth orbit.
2See alsohttp://www.actel.com/
3On the International Space Station (ISS), many computing tasks are carried out by COTS laptop PCs.

2

Substrate

Positive

well

DrainSource

CopperCopper

Gate

Oxide

Cosmic ray

(heavy ion)

track

Figure 1: SEU triggered by a cosmic ray impact

1.3 MODULAR REDUNDANCY

Traditionally, modular redundancy has been the standard approach toward mitigating the effects of per-
manent latch-up. In this approach, majority voting logic [19] allows the incorrect output of one or more
faulty subsystems to be ignored. In 3-way modular redundancy (see Figs. 2 and 3), any two subsystems
can override the output of the third, allowing one subsystemto fail completely without affecting system
level behaviour. 5-way modular redundancy, as employed by the Shuttle main computers, allows up to
two subsystems to fail without affecting functionality.

Modular redundancy is certainly effective, but its requirement for duplication of subsystems carries a
significant mass and power consumption penalty. Whilst it is likely to remain a requirement for critical
subsystems, its cost precludes its universal applicability.

1.4 EXPLOITING REDUNDANCY WITHIN FPGAS

For practical reasons, most FPGA layouts are typically restricted to using no more than approximately
60 – 80% of the chip’s theoretical optimal capacity. FPGA layout is thought to be an NP-complete
problem, though good heuristics exist that can do a reasonable job of automatically mapping designs
to configuration bit streams. These algorithms tend to reacha solution much faster when the design
can be mapped to a relatively small proportion of the chip’s resources, and can fail to generate a layout

Redundant

Subsystem

Redundant

Subsystem

Redundant

Subsystem
Input Voting

Logic
Output

Figure 2: Modular Redundancy

3

completely in cases where the proportion is close to 100%. Asa consequence of this, almost all practical
FPGA layouts contain a significant amount of unused resources – though FPGA circuits are not usually
in and of themselves redundant, spare FPGA logic capacity unused by the circuit can nevertheless be
exploited in order to improve reliability.

A tempting possibility would be resynthesising logic locally within small areas of the chip, adding
redundancy to the circuit until the chip is completely full.This approach, however, would incur a power
and performance penalty, whilst adding redundancy to circuits in an unpredictable way, without any
guarantee that the resulting layout would in practice survive any particular fault.

A more practical approach is to lay out the FPGA conventionally, thenlocally resynthesiselogic around
faults as and when they are detected (see Section 2.4). Having spare capacity in terms of unused logic
blocks and wiring resources spread across the chip layout makes it feasible to consider only a small
area near the fault, avoiding the need to generate a completenew layout from scratch. In outline, this
approach may be summarised as follows (see also Fig. 4):

1. FPGA running normally (Fig. 4.i)

2. Fault detected (Fig. 4.ii)

3. Take FPGA off line and put it through a test procedure in order to localise the fault or faults

4. Locally resynthesise logic around each fault, resultingin a working, work-around layout

5. Upload new configuration bit stream to FPGA

6. Put chip back on line (Fig. 4.iii)

Several alternatives are possible as regards the implementation of local resynthesis. Most obvious is
perhaps re-running the software responsible for the original FPGA layout again with appropriate con-
straints preventing it from using damaged parts of the chip –whilst technically feasible, this approach

i)

Output

a

b

c
Voltage

Comparator

R

R

R

R

R

All resistor values are equal,

e.g. R = 1kΩ

Vsupply

Ground (0V)

ii)

a

b

c

Output

Figure 3: Typical Majority Voting Logic Implementations: i. Analogue, ii. Digital

4

i)

Undamaged FPGAA

B C D

E F

ii)

Cosmic ray (heavy ion)

impact permanently

damages logic resource

A

B D

E F

iii)

Functionality of damaged

resource implemented in

redundant, previously

unused logic by local

resynthesis

Note that the resulting

look up tables need not

resemble the original

versions − local resynthesis

does not just naïvely move

blocks and reroute wires

P

R

Q

S

T U

Figure 4: Using available FPGA resources to work around permanent latch-up damage

5

is not well suited to automated in-flight use, since the software required typically assumes a powerful
workstation class computer, often with some human intervention.

Jason Lohn’s group at the NASA Ames Research Centre [8, 7] have experimented with automatically
generating FPGA layouts with genetic algorithms. A population of random FPGA bit streams are tested,
with their behaviour compared with ideal test traces derived from the original circuit. Over many gen-
erations, functionality tends to converge on the desired circuit, even though no formal link other than
observed behavior exists between the original design and the generated design. Good results have been
achieved on a number of test circuits, but the difficulty of proving that a generated circuit that includes
flip flops really does implement the intended behaviour (as opposed to just happening to respond cor-
rectly to a non-exhaustive set of tests) is likely to limit the technique’s applicability.

1.5 AVAILABILITY

An FPGA undergoing repair will, of necessity, not be able to continue performing its intended function
during the repair process. As a consequence, our technique will not be suitable for applications requiring
high availability unless the FPGA is itself part of a modularredundant subsystem. In such situations,
the ability to repair faulty subsystems is still a significant advantage, because it allows redundancy to be
maintained over far longer periods.

1.6 LOCAL RESYNTHESIS AS A SAT PROBLEM

In this paper, we describe a technique that can automatically perform local resynthesis whilst retaining
functionality that is formally identical to that of the original circuit. In essence, formally correct local
resynthesis requires an alternative, work-around bit stream to be determined such that for all possible in-
puts and/or internal states, the outputs and next internal state of the work-around circuit matches exactly
that of the original circuit. Finding such configurations iscomputationally hard, perhaps prompting the
adoption by Lohn’s group of heuristic search algorithms that do not attempt to ensure formal correctness.

In the remainder of this paper, we demonstrate how local resynthesis can be transformed into a equivalent
SAT problem [3, 2, 1], thereby demonstrating that local resynthesis is no harder than NP-complete4. The
resulting SAT problems are suitable for attack by SAT solvers, with solutions guaranteed to preserve
correctness with respect to the original circuit.

2 DEFINING THE SAT PROBLEM

Given an original, correct, bit streamb along with a model of a correct FPGAf , a work-around bit
streamb′ for a faulty FPGAf ′ must possess the following property:

∀i . f(b, i) ⇔ f ′(b′, i)

Informally, this states that for all possible inputsi, the bit streamb′ causes the damaged FPGA to
behave exactly identically to the original FPGA and bit stream (see also Fig. 5). Lettingb′ represent any
potential work-around bit stream, this expression will evaluate totrue if and only if correct functionality
is preserved – in effect, the expression embodies formal verification of a work-around bit stream with
respect to an original bit stream5. Alternatively, the expression may be thought of as defininga Boolean
satisfiability problem whose solutions represent all possible work-around bit streams – solving such a
SAT problem is therefore equivalent to the local resynthesis problem.

After constant propagation, quantifier elimination and (ifnecessary) transformation to CNF or NNF
form, feeding the resulting expression to a SAT solver allows b′ to be calculated.

It is noteworthy that no inherently complex conventional chip layout, placement or routing algorithms
are required, suggesting that this functionality might be implemented within embedded systems carried

4We conjecture (assumingP 6= NP) that no complete P space/time algorithm exists, though such speculation is beyond the
scope of this paper.

5Note that this approach may be used to verify the correctness of anywork around bit stream, including those generated by
genetic algorithms or by other means.

6

Input

FPGA Model f

(Undamaged)

FPGA Model f’

(Damaged)

=

Original bit stream b

(known)

New bit stream b’

(to be determined)

true iff both FPGA

models have identical

outputs

Figure 5: FPGA Repair as a SAT Problem

on the spacecraft itself. Typical SAT solver memory requirements are generally not particularly severe
for the kinds of problem we consider, requiring approximately 3MB for the circuit shown in Fig. 6. Run
times are of the order of tens of seconds on contemporary CPUs(see Section 3, Fig. 7).

The SAT problems that result from this process are typicallyquitehard, in the sense that standard SAT
solvers do not typically find solutions very quickly. Empirically, non-clausalSAT solvers (i.e. those
that do not require their formulas to be converted to CNF form) appear to be most effective, possibly
because they allow circuits to be modeled in a form that is closer to their original structure.

2.1 QUANTIFIER ELIMINATION

SAT solvers typically do not directly support quantifiers, so the first step involves eliminating them from
the expression. Removing the universal quantifier∀i is therefore essential. Sincei may consist of several
Boolean variables, it is helpful to (equivalently) expressthe problem as

∀i1 ∀i2 . . . ∀in . f(b, i) ⇔ f ′(b′, i)

We can now eliminate these quantifiers one by one by applying the rewrite rule

∀a . F (a) −→ F (1) ∧ F (0)

repeatedly until none remain. Since this operation has an expression size and space upper bound of2N ,
this restricts our technique’s applicability to fairly small sub-circuits, though this is less significant when
slicing techniques are adopted (see Section 2.2).

After constant folding and common subexpression elimination, the resulting expression is a directed
acyclic graph, with exactly one ‘output’ node representingthe result of the expression, and one ‘input’
node for each bit inb′. The variablesi and b are no longer externally exposed, with the resulting
expression depending only uponb′. At this point, the expression may be passed to a suitable SATsolver,
e.g. NNF-WALKSAT, as described in Appendix A.

2.2 SLICING

Attempting to resynthesise a complete FPGA is infeasible with our method due to the tendency for the
size of the SAT problem to be proportional to2N , whereN is the total number of inputs and flip flop
outputs (see Section 2.3). It is therefore necessary to workon a smallsliceof the chip. The rationale
behind this approach is that, whilst a cosmic ray impact might render the original circuit useless, many
possible work-around bit streams with low Hamming distancefrom the original bit stream typically
exist, differing only near the damage site. Several variantapproaches are feasible:

7

1. Slicing by Coordinate.In this case, a slice is chosen such that inclusion is based onphysical
distance (in terms of the 2D chip layout) from the damage site.

2. Slicing by Connectivity.Such a slice might be generated by beginning at the damage site and
including all bit stream bits that are electrically reachable through a predetermined number of
logic blocks.

3. Slicing by Heuristic.In this case, a slice might be generated by some device-specific algorithm
capable of exploiting aspects of its design in order to create a more effective slice than either of
the above simpler approaches.

It is possible that, in some cases, no local solution may exist, but solutions that differ more significantly
may still be possible. The probability that this might occurcan be reduced by arranging the original
design such that used resources are spread evenly across thechip rather than clustered together, but in
extreme cases the fall back option still exists of creating an alternative layout manually (e.g. remotely
on Earth). Our experimental results suggest that local solutions are possible in most cases, however.

2.3 HANDLING FLIP FLOPS

The technique presented here essentially considers combinational circuits; clocked synchronous circuits
may be accommodated by a small modification:

1. If a working flip-flop necessary to implement the original circuit falls within the slice under repair,
treat its output as if it was an externalinput of the subcircuit. Similarly, treat its input as anoutput
of the subcircuit.

2. If a damaged flip-flop necessary to implement the original circuit falls within the slice, exclude its
connections from the slice and substitute an alternative, working flip flop. Local resynthesis will
take advantage of the alternative flip-flop and avoid the damaged original.

2.4 DETECTION AND L OCALISATION OF FAULTS

It is envisaged that faults will initially be detected as a consequence of observably incorrect behaviour of
a subsystem implemented on an FPGA. Well known techniques already exist, such as watchdog circuits,
suicide/fratricide logic, etc. In a practical implementation, when incorrect behaviour is detected, an
embedded processor6 will be triggered to begin a repair cycle.

Initially, the fault will only be known to exist somewhere within a particular chip, but gate-level fault
information is required in order to allow a work around bit stream to be generated. Most FPGAs support
in-circuit testing via the industry standard JTAG interface – this typically allows all flip flops to be
temporarily reconnected as a single shift register, allowing the internal state of the chip to be uploaded
or downloaded. Assuming that the chip is not so badly damagedthat its JTAG interface no longer
functions, uploading a series of test vectors and examiningtheir results potentially allows faults to be
localised with considerable accuracy. Such testing procedures are ubiquitously employed by automated
test equipment during chip manufacture, so this requirement is unlikely to be prohibitive.

3 EXPERIMENTAL RESULTS

As a proof-of-concept, a small, FPGA-like circuit was modeled (see Fig. 6). Eight inputs, split into two
groups of four, feed the inputs of four 16-bit look-up tables, whose outputs feed a fifth 16-bit look up
table. The model was configured by randomly generated ‘bit streams’, each 80 bits long, mapping to
the configuring bits of the look up tables. Stuck-at faults were simulated by fixing the values of one or
more bits at 0 or 1. For simplicity, fixed wiring was assumed. Anon-clausal variant of the WALKSAT
algorithm [11] (see Appendix A) was used to solve the resulting SAT problems.

6This could either be an on-chip CPU or an external, possibly radiation hardened, general purpose processor.

8

Output

Inputs

Zero

One

Stuck at Zero

Stuck at One

Lookup Table Bits

Figure 6: Example Test Circuit Model

In our experiments, the SAT problems were generated by a modified version of the HarPE hardware
partial evaluator [16]. HarPE is a C++ template library [18]that allows circuits to be described in a
high-level language, then manipulated by partial evaluation [5, 10, 9]. The library was extended slightly
to allow its output to be represented in the format necessaryfor typical SAT solvers.

Test runs were repeated with between 1 and 6 simulated faults. Run times (C++,gcc -O3, running on
a 1.6GHz Pentium III) and success rate are shown in Fig. 7, where ‘success’ was defined empirically as
the SAT solver finding a solution within 20 minutes7.

4 RELATED WORK

The original concept of generating FPGA bit streams with SATsolvers is due to David Greaves at the
Computer Laboratory, University of Cambridge [4].

7Note that no attempt was made to verify whether the generated problems were actually soluble – this corresponds well to
reality, in that some damage sites in critical positions may notallow any possible work around configuration to be determined.

2 3 4 5 6

30

40

50

60

70

80

Number of Stuck-at Faults

M
e

a
n

 R
u

n
 T

im
e

 (
s)

2 3 4 5 6

20

40

60

80

100

%
 S

u
c

c
e

s
s

Number of Stuck-at Faults

Figure 7: Test Results

9

The Dynamic Evolution for Fault Tolerance (ITSR/ES) project headed by Jason Lohn at the NASA
Ames Research Centre is applying genetic algorithms to FPGArepair [8, 7, 6]. This approach has been
shown to work, but suffers from the problem that its generated circuits are not guaranteed to be formally
equivalent to the original.

Adrian Stoica’s group at JPL is working on the synthesis and repair of analogue field programmable
transistor array (FPTA) devices with genetic algorithms [13].

Toby Walsh’s group at the School of Computer Science and Engineering, University of New South
Wales, Australia are working on non-clausal SAT solvers, one of which, NOCLAUSE, is due to be
released into the public domain shortly [14].

There is a huge amount of literature on the subject of SAT, particularly with regard to resolution of
Boolean expressions in CNF form. The web sitehttp://www.satlive.org/ is a widely-used
and very useful resource for information about SAT/QBF solvers.

5 CONCLUSIONS

In this paper, we have described a method for restating the problem of finding an alternative work-around
FPGA configuration as a Boolean SAT problem, along with modifications to the WALKSAT algorithm
that allows solutions to the resulting problems to be found efficiently. The feasibility of using SAT
solvers for FPGA repair has been empirically demonstrated.

6 FUTURE WORK

The approach described in this paper assumes an underlying clocked synchronous model. We hope
to apply similar techniques to the synthesis and manipulation of a wider class of circuits whose dy-
namic characteristics are critical, e.g. self-timed circuits and globally asynchronous locally synchronous
(GALS) circuits.

In recent papers [17, 15], we describe a multi-value logic that is capable of reasoning about asynchronous
circuits, and also about such circuits’ behaviour in response to SEUs and permanent latch up faults. An
approach, similar to that described in this paper, but usingour more accurate logics may make it feasible
to automatically repair FPGA-based circuits whose asynchronous behaviour is more critical than those
relying upon the synchronous model assumed here.

Our finding that non-clausal SAT solvers appear to work better for FPGA synthesis has also been noted
by Greaves [4]. Finding out exactly why this is the case may beuseful both within our own problem
domain and also in the wider SAT solver community.

The Boolean SAT expression necessary for local resynthesiscan also be used to check the validity of
solutions that have been arrived at by other means, including those generated by genetic algorithms, so
it is possible that a combined approach may offer further benefits.

7 ACKNOWLEDGEMENTS

This work was supported by the NASA Ames Summer Internship programme, managed by MCT/QSS
for NASA during the summer of 2004. Discussions with membersof the Automated Software Engineer-
ing group at Ames, particularly Arnaud Venet, Guillaume Brat, Corina Pasarenau and Mike Lowry, and
with the Jason Lohn and Gregory Larchev of the Genetic Algorithms group were gratefully appreciated.
The first author wishes to thank NASA, MCT, QSS, Intel Research Cambridge, EPSRC, Big Hand Ltd.
and St Edmund’s College for financially supporting this work.

10

A NON-CLAUSAL SAT SOLVER

An NNF-compliant SAT solver was implemented as a C++ libraryfor the purposes of supporting exper-
imentation on this project.

NNF-GSAT Initially, the relatively simple GSAT algorithm [12] was adopted. Though originally
intended for use with CNF problems, it was relatively straightforward to adapt the algorithm for use
with NNF. In outline, the algorithm works as follows:

1. Initialise the variables to random initial values

2. Check to see whether the current variable values satisfy the expression completely. If so, a solution
has been found, so the loop terminates.

3. For each variable, flip its state (i.e. change0 to 1 and vice-versa), then note the number of
subexpressions that aresatisfied(i.e. evaluate to1) as a consequence. Return each variable to its
initial state after each count.

4. Choose the variable that most increases the number of satisfied subexpressions, then flip it perma-
nently.

5. If a predetermined number of attempts has been exceeded, go back to step 1, otherwise go to step
2.

In practice, this algorithm is a little too simplistic, and requires some extra heuristics in order to prevent
it from becoming trivially stuck in local minima. Initial results indicated that, though slow, GSAT was
actually surprisingly effective, given its extreme simplicity.

NNF-WALKSAT In order to improve upon the performance of NNF-GSAT, the WALKSAT algo-
rithm [11] was similarly adapted for use with NNF. The basic WALKSAT algorithm may be summarised
as follows:

1. Choose a clause at random that is currently unsatisfied

2. Depending on whether a random number exceeds the currentheat parameter, either:

(a) Randomly choose a variable that appears within the clause and flip it, or

(b) Attempt flipping each variable that appears within the clause in turn, noting the number of
unsatisfied clauses that result in each case, then choose theone flip that results in the lowest
number of unsatisfied clauses. This is referred to hereinafter as agreedy flip.

WALKSAT is superficially similar to GSAT, but due to the need on each iteration only to enumerate the
variables within a single clause rather than all unbound variables in the entire expression, it is generally
much faster whilst retaining roughly equivalent power. As with GSAT, the basic WALKSAT algorithm
is intended for use with expressions in CNF, so it was necessary to extend and modify it to deal with the
more general NNF case.

The resulting SAT solver, is able to solve the majority of ourtest cases rapidly, even where multiple
stuck-at faults were simulated. The basic WALKSAT algorithm required some modifications and extra
heuristics, due to a bad tendency to get stuck in local minima. The extensions we used are summarised
as follows:

Supporting terms as well as clausesIn an expression in CNF, one single outertermencapsulates pos-
sibly many clauses, and clauses may only contain variables or their negations, not terms. NNF
relaxes this somewhat, in that terms may contain clauses andvice-versa, with the only significant
restriction in comparison with general Boolean expressions being the requirement that negation
may only appear adjacent to a variable.

11

In NNF-WALKSAT, we perform a preprocessing stage, whereupon for each term and each clause,
the list of variables contained within them is cached. Variables that appear directly within a term
are regarded as equivalent to singleton clauses containingonly that variable.

Pre-optimisation of the NNF expressionA simple pre-optimisation pass is performed first, such that
clauses that are of the forma ∨ ¬a ∨ b ∨ . . . are replaced withtrue, terms of the forma ∧ ¬a ∧

b∧ . . . are replaced withfalse, then any remaining constants are evaluated out and folded into the
expression.

Giving clauses close to the root preferenceWhen randomly selecting a clause, preference is given to
clauses that appear close to the root of the expression tree,on the basis that such variables are
more likely to have a wide impact, so it is appropriate to try to make an estimate of their value
early.

Super-flips We add a third kind of flip, in addition to random flips and greedy flips. A super-flip
requires trying all possible combinations of variables, then selecting the combination resulting in
the best score. Since this algorithm has a complexity ofO(2N), it makes sense to set a fairly low
upper limit on the number of variables to which it can be applied – in our current implementation,
super-flips are only attempted for clauses with 8 variables or less.

Super-flips do not appear to make a big difference to many problems, but in some cases they
appear to make it possible to find a solution quickly when the standard algorithm gets stuck for a
long time, even when the probability of performing a super-flip is very small. A useful heuristic
appears to be to have the probabilityp

2N of performing a super-flip, wherep is an empirically-
derived constant8.

Dynamic control of the heat parameter The original WALKSAT algorithm suggests choosing between
random and greedy flips with a probability of approximately0.5. Our finding was that this does
not work for expressions in NNF – though random flips are essential for avoiding local minima,
they often significantly increase the number of unsatisfied clauses in the expression as a whole.
We found that a random flip probability in the range0.01..0.1 normally works, but found that the
ideal value was highly dependent on the expression being solved. If the probability is too low,
the solver gets stuck in local minima, but if it is too high, the algorithm does not converge on a
solution at all.

Our implementation dynamically varies the heat in accordance with the following heuristics:

1. If the most recent flip reduced the number of unsatisfied clauses, reduce the heat exponen-
tially.

2. If the same variable is flipped twice in succession, suggesting that a local minimum has been
encountered, increase the heat by a (fairly large) constant.

3. Otherwise, very gradually move the heat toward a default (small) value (0.001 in our imple-
mentation).

This approach works well for most of the SAT problems we have examined – early in the run, the
heat is kept very low by rule 1, which makes it possible to converge quickly on a possible result.
In many cases, a solution will fall out of this initial attempt immediately. However, if the SAT
solver gets stuck in a local minimum, this frequently results in the same variable being toggled
repeatedly – rule 2 picks up on this, increasing the heat, thereby pushing the variable bindings
away from the minimum.

Retries Whenever a set of variable bindings is found that results in animprovement to the number of
unsatisfied clauses, a snapshot of these bindings is taken for later use. If no improvement beyond
this snapshot is seen for a predetermined number of attempts(1000 in our implementation), the last
snapshot reverted to, giving the search procedure another attempt at finding an improved result.
In a significant proportion of cases, this leads to a solutionbeing found after a small number of
retries.

8Our implementation usesp = 1.

12

Restarts If retrying does not succeed after a large number of attempts(5 in our implementation), this
generally means that the solver is stuck in a local minimum that it can not climb out of by normal
means. In this case, we reset the variable bindings to new, unrelated values then start again. By
experimentation, it was found that determining these values according to the following algorithm
is beneficial:

1. Initially, set all variables to 0

2. On the first restart, set all variables by counting the number of times that each appears
negated and non-negated, choosing a value likely to satisfythe greatest number of clauses in
each case

3. On the second restart, set all variables to 1

4. On all subsequent restarts, set all variables randomly

This can be visualised as initially trying one extreme of theproblem space, then a case roughly in
the middle of the problem space, then the other extreme, and then finally trying cases at random
until a solution is found.

This approach works well as a general purpose SAT solver, although in our application we find
it beneficial to first attempt an initial variable set initialised to the existing FPGA bit stream – in
many cases, this proves to be a considerable speedup, whilstalso increasing the percentage of
successful runs.

BIBLIOGRAPHY

[1] COOK, S. The complexity of theorem proving procedures. InProc. 3rd Annual ACM Symposium
on Theory of Computing(1971), pp. 151–158.

[2] DAVIS , M., LOGEMANN, G., AND LOVELAND , D. A machine program for theorem proving.
Communications of the ACM 5, 7 (July 1962), 394–397.

[3] DAVIS , M., AND PUTNAM , H. A computing procedure for quantification theory.Journal of the
ACM 7, 3 (July 1960), 201–215.

[4] GREAVES, D. J. Direct synthesis of logic using a SAT solver. Unpublished research note, available
at http://www.cl.cam.ac.uk/users/djg/wwwhpr/dslogic.html, 2004.

[5] JONES, N., GOMARD, C., AND SESTOFT, P. Partial Evaluation and Automatic Program Gener-
ation. Englewood Cliffs, NJ: Prentice Hall, 1993.

[6] LARCHEV, G., AND LOHN, J. D. Hardware-in-the-loop evolution of a 3-bit multiplier. In Proc.
12th Annual IEEE Symposium on Field Programmable Custom Computing Machines, FCCM-2004
(2004), pp. 277–278.

[7] LOHN, J. D., LARCHEV, G., AND DEMARA , R. F. Evolutionary fault recovery in a Virtex FPGA
using a representation that incorporates routing. InProc. IPDPS 2003(2003).

[8] LOHN, J. D., LARCHEV, G., AND DEMARA , R. F. A genetic representation for evolutionary
fault recovery in Virtex FPGAs. InProc. ICES 2003(2003), pp. 47–56.

[9] LOMBARDI , L. Incremental computation. InAdvances in Computers, vol. 8, F. Alt and M. Rubi-
noff, Eds. New York: Academic Press, 1967, pp. 247–333.

[10] LOMBARDI , L., AND RAPHAEL, B. Lisp as the language for an incremental computer. InThe
Programming Language Lisp: Its Operation and Applications(1964), E. Berkeley and D. Bobrow,
Eds., Cambridge, MA: MIT Press, pp. 204–219.

[11] SELMAN , B., KAUTZ , H., AND COHEN, B. Noise strategies for improving local search. InProc.
12th National Conference on Artificial Intelligence, AAAI’94 (1994), vol. 1, MIT Press, pp. 337–
343.

13

[12] SELMAN , B., LEVESQUE, H. J.,AND M ITCHELL , D. A new method for solving hard satisfiability
problems. InProc. 10th National Conference on Artifical Intelligence, AAAI’92 (1992), pp. 440–
446.

[13] STOICA, A., ARSLAN, T., KEYMEULEN, D., DUONG, V., GUO, X., ZEBULUM , R., FERGU-
SON, I., AND DAUD , T. Evolutionary recovery of electronic circuits from radiation induced faults.
In Proc. IEEE Conference on Evolutionary Computation(2004), CEC.

[14] THIFFAULT, C., BACCHUS, F., AND WALSH, T. Solving non-clausal formulas with DPLL search.
In 10th International Conference on Principles and Practice of Constraint Programming (CP-
2004)(2004), vol. 3258 ofLecture Notes in Computer Science, Springer-Verlag.

[15] THOMPSON, S., AND MYCROFT, A. Abstract interpretation of combinational asynchronous
circuits. In 11th International Static Analysis Symposium (SAS’04)(2004), R. Giacobazzi, Ed.,
vol. 3148 ofLecture Notes in Computer Science, Springer-Verlag, pp. 181–196.

[16] THOMPSON, S., AND MYCROFT, A. Bit-level partial evaluation of synchronous circuits.In
preparation, draft available at http://findatlantis.com/mypapers/, 2004.

[17] THOMPSON, S.,AND MYCROFT, A. Sliding window logic simulation. In15th UK Asynchronous
Forum(2004), Cambridge.

[18] VELDHUIZEN, T. Using C++ template metaprograms.C++ Report 7, 4 (May 1995), 36–43.
Reprinted in C++ Gems, ed. Stanley Lippman.

[19] VON NEUMANN , J. Probabilistic logics and the synthesis of reliable organisms from unreliable
components.Automata Studies(1956), 43–98.

14

